

Total Station
User Manual-AXIS9

STEC

PRECAUTIONS

Congratulations on your purchase of AXIS9 total station!

Please read carefully through the User Manual before you switch on the product.

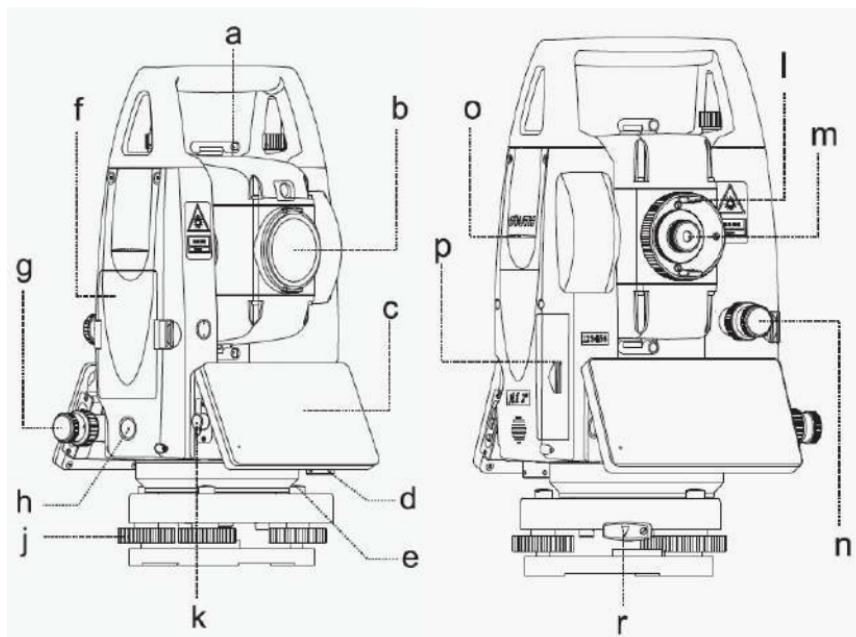
1. Do not collimate the objective lens directly to the sunlight without a filter.
2. Do not stare at the laser beam, or point the laser to the others' eye!
3. Do not store the equipment in extremely high or low temperature.
4. When the equipment is not in use, store it in the case to avoid dust and humidity.
5. If there is a great difference between the temperature in work field or store place, you should leave the equipment in the case until it adapts to the temperature of environment.
6. If the equipment has not been used for a long time, you should remove the battery for separate storage.
7. The battery should be charged once a month.
8. When shipping the equipment, please place it in the carry case. The cushioned material should be used to cover around the case for support.
9. Clean the exposed optical parts by absorbent cotton or lens-paper only!
10. Clean the surface softly with a woolen cloth. If it gets wet, you should dry it immediately before switch-on.
11. Please check the power-supply, functions, indications and parameters of the equipment goes well before operation.
12. Do not disassemble the total station by yourself. Please contact our local authorized dealer when you find the equipment abnormal.

CONTENTS

1. INTRODUCTION.....	1	4.2 Station Height.....	14
1.1 Features.....	1	4.3 Backsight Checking.....	14
1.2 Appearance.....	2	4.4 Resection/ Free Station.....	15
1.3 Measuring Preparation.....	3	4.5 Point to Line.....	16
1.4 Setting Up.....	3	5. COLLECT.....	17
1.5 Battery Information.....	5	5.1 Measure Points.....	17
1.6 Dismounting/Mounting the Tribrach.....	7	5.2 Distance Offset.....	18
1.7 Eyepiece Focusing.....	7	5.3 Plane Offset.....	19
2. OPERATION.....	8	5.4 Column Offset/ Hidden Point.....	20
2.1 Symbols.....	8	5.5 MLM/ Tie Distance.....	21
2.2 Function Keys.....	9	5.6 Line & Extend Point.....	22
3. MEASUREMENT.....	10	5.7 Line & Extend Angle.....	23
3.1 Angle Measurement.....	10	5.8 REM/ Remote Height.....	24
3.2 Distance Measurement.....	11	6. STAKE OUT.....	25
3.3 Coordinate Measurement.....	12	6.1 Point Stake-Out.....	25
4. STATION.....	13	6.2 Angle & Distance Stake-Out.....	26
4.1 Known Point.....	13	6.3 Alignment Stake-Out.....	26

6.4 Line Stake-Out.....	27	10.4 Coordinate.....	42
7. JOB.....	27	10.5 Communication.....	42
8. COGO.....	28	10.6 Adjustment.....	43
8.1 Traverse.....	28	10.7 Auxiliary.....	43
8.2 Inverse.....	28	10.8 Initialize.....	44
8.3 Area & Girth.....	29	10.9 About.....	44
8.4 Point-Line Inverse.....	29	11. DATA.....	45
8.5 Intersection – 2 Points.....	30	11.1 Raw Data.....	45
8.6 Intersection – 4 Points.....	32	11.2 Coordinate Data.....	45
8.7 Volume.....	32	11.3 Code Data.....	46
9. ROAD.....	33	11.4 Graphic Data.....	46
9.1 Road Select.....	34	11.5 Data Import.....	47
9.2 H-Alignment.....	34	11.6 Data Export.....	48
9.3 V-Alignment.....	37	12. QUICK SET.....	49
9.4 Road Stake-Out.....	38	12.1 PPM Set.....	49
10. SET.....	39	12.2 Target.....	50
10.1 Unit.....	39	12.3 Tilt-Sensor.....	50
10.2 Angle.....	40	12.4 Measure Mode.....	51
10.3 Distance.....	40	12.5 Laser Plummet.....	51

13. INSPECTION & ADJUSTMENT.....	52
13.1 Plate Vial.....	52
13.2 Circular Vial.....	53
13.3 Tilt-Sensor.....	53
13.4 Reticle Unit.....	54
13.5 Perpendicularity between Sight of View & Horizontal Axis (2C).....	55
13.6 Compensation of Vertical Index Difference.....	56
13.7 Vertical 0 (I Angle)	56
13.8 Constant K.....	58
13.9 Coincidence between Sight of View and Emitting Axis.....	59
13.10 Leveling Screws on Tribrach.....	59
14. ERROR CODE.....	60
15. SAFETY GUIDE.....	61
15.1 Internal Distance Meter	61
15.2 Laser Plummet.....	63
APPENDIX – Data Format.....	65


1. INTRODUCTION

1.1 FEATURES

STEC AXIS9 Total Station features open interface, available for any 3rd party software. 5.0-inch capacitive screen with multi-touch technology, ideally suit for your daily task.

- ❖ Integrated CPU, MTK MT6735 quad-core processor boosts speed and performance.
- ❖ Enhanced algorithm, powerful GPU with MaliT720-MP2 3D processor.
- ❖ Multiple data transform. Support wireless Bluetooth, WIFI connection.

1.2 APPEARANCE

- a Collimator
- b Objective Lens
- c Display Unit
- d T/P Sensor
- e Circle Bubble
- f Battery
- g Horizontal Tangent
- h Trigger Key
- j Leveling Screw
- k RS232 Port
- l Focusing Ring
- m Eyepiece
- n Vertical Tangent
- o Central Mark
- p Comm Port
- r Tribrach Lock

1.3 MEASURING PREPARATION

Unpacking

Lay down the case lightly with the cover upward.

Unlock the case, and take out the instrument.

Storage of Instrument

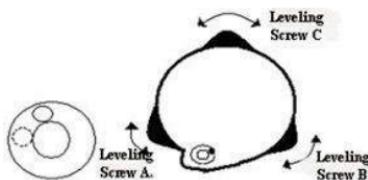
Cover the cap, place the instrument into the case with the vertical clamp screw and circular vial upwards (lens towards tribrach

1.4 SETTING UP

Setup and Levelling the instrument precisely to ensure the best performance.

Setting up the tripod

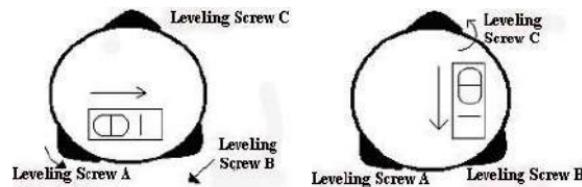
- A. Loosen the screws on the tripod legs, pull out to the required length and tighten the screws.
- B. Make the center of tripod and the occupied point approximately on the same plumb line.
- C. Step on the tripod to make sure if it is well stationed on the ground.


Instrument setup

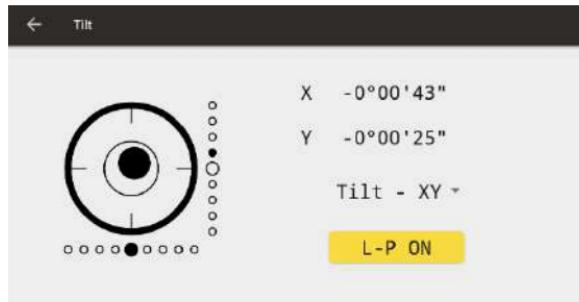
- A. Extended the tripod legs in a stable position.
- B. Place and lock the instrument carefully on the tripod
- C. Turn on the instrument and activate the laser plummet under the Quick-Set. Hold the two free legs which are not fixed on the ground and decide the position to fix according to the laser dot. When the laser dot is roughly on the station point, fix the left 2 legs.

D. Leveling the instrument by circular vial.

- a) Rotate the foot-screw A and B to move the bubble in the circular vial, in which case the bubble is located on a line perpendicular to a line running through the centers of the two leveling screw being adjusted .
- b) Rotate the foot-screw C to move the bubble to the center of the circular vial.



E. Precisely leveling by plate vial


- a) Rotate the instrument horizontally by loosening the horizontal clamp unit and place the plate vial parallel to the line connecting rotating the foot-screw A and B, and then bring the bubble to the center of the plate vial by

rotating the foot-screw A and B.

- b) Rotate the instrument in 90° (100gon) around its vertical axis and turn the remaining leveling screw or leveling C to center the bubble once more.
- c) Repeat the steps and check whether the bubble is correctly centered in all directions.

If the laser dot doesn't keep the center position, please slightly loosen the screw under the tripod head and move the instrument (don't rotate the instrument) until the laser dot is on the station point. Tighten the screw and level the instrument again. Repeat these steps until the instrument is precisely centered and leveled.

Tips: You can also level the instrument precisely adjust by the E-bubble. When the tilt is over $\pm 3'$, the system will enter to E-bubble interface automatically.

[X]: The compensating value on X direction

[Y]: The compensating value on Y direction

[TILT-OFF]: Turn off tilt sensor

[TILT-X]: Turn on sensor in X direction only

[TILT-XY]: Turn on X&Y sensor in dual directions.

1.5 BATTERY INFORMATION

Inserting Battery

Put the battery into the instrument, push it. Check and insert it correctly to side into the housing.

Replacing Battery

Press the battery lock on both sides, remove the battery. When the remaining voltage is less than one grid, please stop your operation and charge it as soon as possible.

Note: Before remove the battery from the instrument, make sure that the power is turned off.

Otherwise, the instrument may be damaged.

Note:

a) The operating time depends on the outside conditions, such as ambient temperature, charging time, the cycles of charging, etc. It is recommended for safety to charge the battery beforehand or to prepare spare full-charged batteries.

b) The remaining voltage of battery shows the power level, regarding to the current measure mode. In normal, the consumption of distance measurement mode is higher than angle measurement mode. When switching the measurement mode from angle to distance in a low battery voltage, it might interrupted the operation.

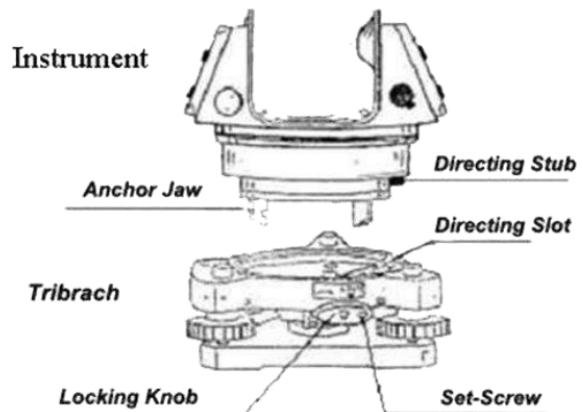
Charging

The battery must be charged prior to using before the first time operation.

The battery LI-39 should be charged only by the official charger NC-III, which packed together with the instrument. Please connect the power supply in 220V, under $0^{\circ}\sim\pm45^{\circ}\text{C}$.

When the indicator on the charger is red, the charging process has begun. When indicator turns green, the charging has finished. For safety, please pull out the battery and charger in time.

Note: In order to get the maximum service life, please charge the battery at least once a month.


1.6 DISMOUNTING/MOUNTING THE TRIBRACH

Dismounting

If necessary, the instrument can be dismounted from tribrach. Turn the locking knob about 180° counter-clockwise to disengage anchor jaws, and take off the instrument from tribrach.

Mounting

Insert three anchor jaws into holes of tribrach and line up the directing stub with the directing slot. Turn the locking knob about 180° clockwise to mounting the instrument.

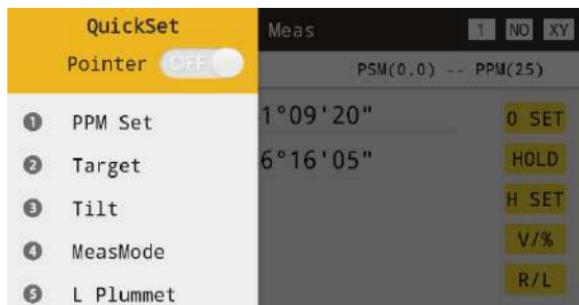
1.7 EYEPIECE FOCUSING

Sight the Telescope to bright place and rotate the eyepiece tube to make the reticle clear. Roughly collimate the target by the top of the

triangle mark on EDM cover.

Rotate the focusing screw on eyepiece to make the image clear.

2. OPERATION


2.1 SYMBOLS

Meas			1	NO	OFF
Ang.	Dist	Coord	PSM(0.0) -- PPM(25)		
V	:	34°16'02"	MEAS		
HR	:	44°38'29"	MODE		
SD	:	m	S.0		
HD	:	m			
VD	:	m			

Meas			1	NO	OFF
Ang.	Dist	Coord	PSM(0.0) -- PPM(25)		
V	:	34°16'04"	MEAS		
HR	:	44°38'39"	MODE		
N	:	m	R.HT		
E	:	m	INHT		
Z	:	m	STN		

V/V%	vertical angle/(gradient display)
HR/HL	horizontal angle right/ left
HD	horizontal distance
VD	vertical difference
SD	slide distance
N	north coordinate
E	east coordinate
Z	elevation coordinate
m/ft	Meter/Feet, distance unit
dms	degree/ minute/ second
Mil/Gon	unit of angle measure
PSM	prism constant value
PPM	atmosphere correction value
PT	point name

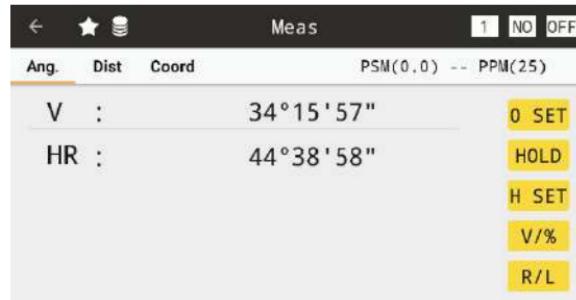
2.2 FUNCTION KEYS

☞ Quick-set

[Quick-Set]: Including the setting of laser pointer, PPM, target, tilt-sensor, measure mode and laser plummet.

[Data]: Including raw data, coordinate data, code and graphic data.

[Mode]: Including N times, continuous or tracking mode.


[Target]: Including Reflector sheet, prism or non-prism mode.

[Electric tilt-sensor]: X-axis, XY-axis or closed.

3. MEASUREMENT

3.1 ANGLE MEASUREMENT

V: Vertical angle

HR/HL: Horizontal right or left

[0 SET]: Set the current horizontal angle to 0. After that the backsight point should be set again.

[HOLD]: Hold the horizontal angle until releasing.

[H SET]: Set the horizontal angle by entered a certain value

HR: Input the value of horizontal angle

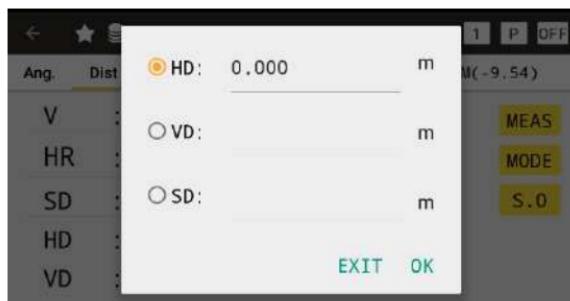
[V/%]: Switch the display of angle between regular vertical angle and slope percentage.

[R/L]: Switch between horizontal right or left.

H-Set

3.2 DISTANCE MEASUREMENT

SD: The slide distance.


HD: The horizontal distance.

VD: The vertical distance.

[MEAS]: Measure.

[MODE]: Switch the measure mode

[S.O]: Enter the page of stake out.

[HD]: Input the horizontal distance for stake out point.

[VD]: Input the vertical distance for stake out point.

[SD]: Input the slide distance for stake out point.

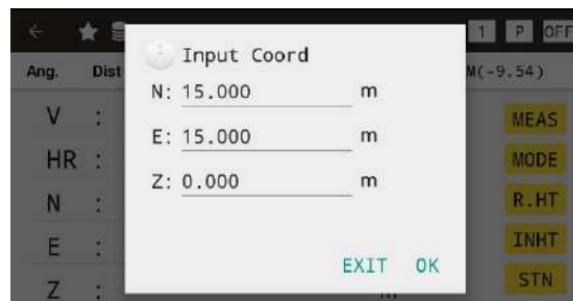
Stake-out

3.3 COORDINATE MEASUREMENT

N: North coordinate.

E: East coordinate.

Z: Elevation coordinate.


[MEAS]: Measure

[MODE]: Switch the measure mode

[R.HT]: Input the reflector height.

[INHT]: Input the instrument height.

[STN]: Input the coordinate of station

☞ Input the coordinate of station point.

Please redefine the backsight point after station setting.

N: Input North coordinate.

E: Input East coordinate.

Z: Input Elevation coordinate.

4. STATION

Each coordinate computation relates to the currently set station. Please set the station by known points before surveying and stake out.,

4.1 KNOWN POINT

Known Pt		1	NO	OFF	
Stn	1	+			
InHt	0.000	m	R.Ht	0.000	m
BS PT		347°33'16"			+
Current		347°33'16"			
Aim At BS!		SET			

Known Pt		1	NO	OFF	
Stn	1	+			
InHt	0.000	m	R.Ht	0.000	m
BS ANG		000°00'00"			+
Current		347°33'06"			
Aim At BS!		SET			

There're two methods to set the backsight point: one is by the coordinates of the known point, the other is by the angle of the known point.

Stn: Input the ID of known point, selected from the memory or entered a new point .

InHt: Input the instrument height.

R.Ht: Input the reflector height.

[BS PT]: Input the ID of backsight point, selected from the memory or entered a new point

[BS ANG]: Input the angle of backsight point.

Current: Display the current horizontal angle.

[SET]: Set the angle of backsight point according to the current input.

4.2 STATION HEIGHT

Calculate the station height by measuring a point with known height.

Stn Ht	1	NO	OFF
Ht 0.000 m	CALL		
InHt 0.000 m	R.Ht	0.000 m	
VD	m		
StnHt(Meas)	m	MEAS	
StnHt(Current)	0.000 m	SET	

Ht: Input the height of known point, user can selected it from internal memory.

VD: The current vertical angle.

StnHt(Meas): The measured height of station.

StnHt(Current): The current height of station.

[MEAS]: Start to measure

[SET]: Set the measured result as the STN Ht.

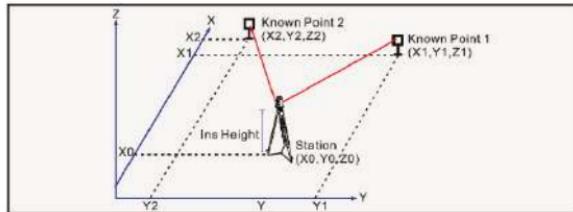
4.3 BACKSIGHT CHECKING

Check whether the current angle coincide with the backsight.

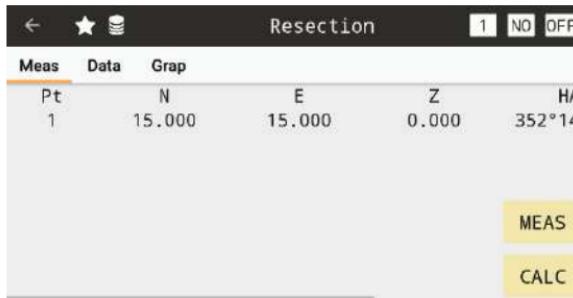
Stn Pt 1	Bs Check	1	NO	OFF
BS Pt				
BS	200°00'00"			
HA	348°07'13"			
dHA	148°07'13"	RESET		

Stn Pt: The ID of station point.

BS Pt: The ID of backsight point. It will be blank if the backsight angle was input by manually.


BS: The backsight angle.

HA: the current horizontal angle.


dHA: The difference between BS and HA.

[RESET]: Reset the current angle as the backsight.

4.4 RESECTION

The “Resection” function, also known as Free Station, is used to determine the instrument position from measurements to a minimum of two known points.

☞ The list of measured known points.

Note:

- a) If the angle between the first measurement point and the second one is too small or too large, it will influent the geometrical accuracy of calculation result. So selecting a geometrical graphic with good structure is important.
- b) The calculation requires at least three angle data or two distance data.
- c) Basically, the station height is calculated by the distance data. If the distance data was not carried out, the height will be determined by the angle of known point.
The standard deviations and residuals for accuracy assessments are provided.

Resection

Pt 2 + **ANG.**

R.Ht 1.500 m **ANG & DIST**

HA

VA **DONE**

SD m

The measurement for known points

Pt: Input the ID of known point.

R.Ht: Input the reflector height.

HA: The measured result of horizontal angle.

VA: The measured result of vertical angle.

SD: The measured result of slide distance

[ANG.]: Only angle measurement.

[ANG&DIST]: Angle & distance measurement.

[DONE]: Save the result and back to the point list.

4.5 POINT TO LINE

Pt to Line

InHt 0.000 m

R.Ht 1.500 m

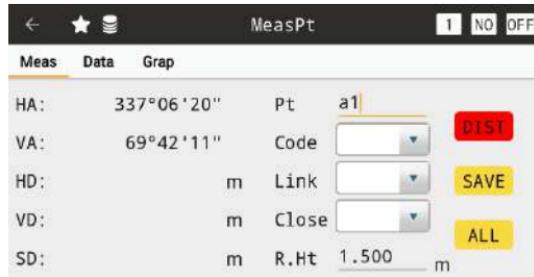
A-HD 0.513m **MEAS**

B-HD 0.518m **MEAS** **NEXT**

Pt to Line

Stn Aim At BS PtB!

N	0.000 m	BS Ang	0°00'00"
E	0.000 m	Azimut	18°32'55"
Z	0.000 m	SET	


Measure 2 points as A and B, click [next] to calculate the HD/VD/SD between A and B.

Instrument will establish a new coordinate system automatically, click [SET] to set the station.

5. COLLECT

5.1 MEASURE POINTS

It included not only measure and record, but also the point coding and linking in graphic display.

HA: The current horizontal angle.

VA: The current vertical angle.

HD: The measured horizontal distance.

VD: The measured vertical distance.

SD: The measured slide distance.

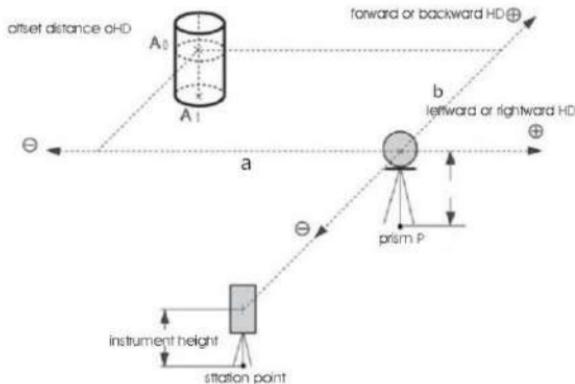
Data: Show the data of saved points.

Grap: Show the graphic data of saved points.

Pt: Input the ID of point. It will add "1" automatically on the point name in each time.

Code: Input or select the code.

Link: Input the ID of known point, the system will create a line from the known point to current point, and the line will display in graphic.


R.Ht: The reflector height.

[DIST]: Start to measure distance.

[SAVE]: Save the previous result. If the distance measurement was not carried out, the system will save the current angle result only.

[ALL]: Measure and save.

5.2 DISTANCE OFFSET

The distance offset calculates from measurement or coordinates longitudinal, parallel offset and height differences of the target point relative to the known point.

Note: All directions are correspondent to the visual side of operator.

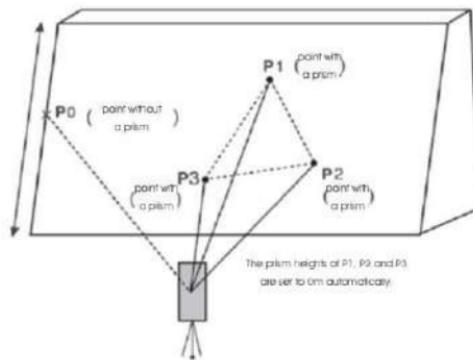
DistOffset				
Meas	Data	Graph	1	NO OFF
Pt	ty1			
Code		R.Ht	1.500	m
<input type="radio"/> L	<input checked="" type="radio"/> R	0.000	m	
<input type="radio"/> Fw	<input checked="" type="radio"/> Bw	0.000	m	MEAS
<input type="radio"/> Up	<input checked="" type="radio"/> Dn	0.000	m	ALL

Pt: Input the ID of point.

Code: Input or call up the code.

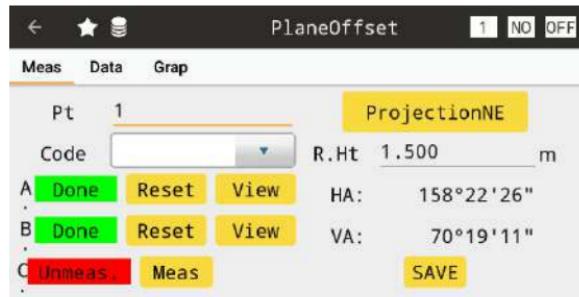
R.Ht: Reflector height.

[L][R]: The lateral deviation in left or right


[Fw][Bw]: Difference in length.

[Up][Dn]: The altitude deviation in upward or downward

[MEAS]: Start to measure.


[ALL]: Measure and save.

5.3 PLANE OFFSET

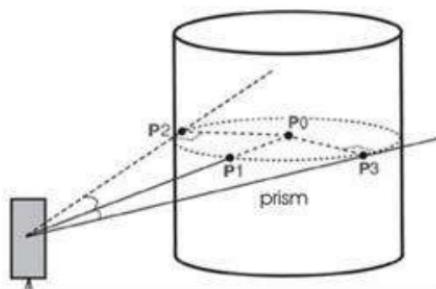
Consider that Point P0 is on the edge of a plane, which cannot be measured directly through non-reflector mode.

Measure P1/P2/P3, the three random prism points to defines a plane. Then aim at Point P0, it will calculate the coordinate automatically.

[Meas]: Measure the point.

[Reset]: Re-measure the point.

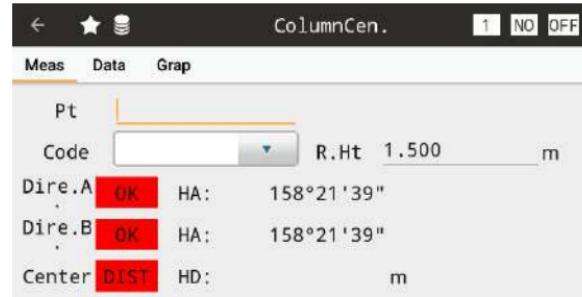
[View]: View the result.


[SAVE]: Save the calculation result.

HA: The current horizontal angle.

VA: The current vertical angle.

[GraProjec.NE]: User can choose the graphic projection ways in NE/ZE/ZN according to the specific circumstances.


5.4 COLUMN OFFSET/ HIDDEN POINT

Column offset is widely used in measuring a hidden point that is not directly visible, for example the center of column as picture shown.

Point P1 is the intersection between the station and column, P2 and P3 are the left and right edge points of the cylindrical diameter.

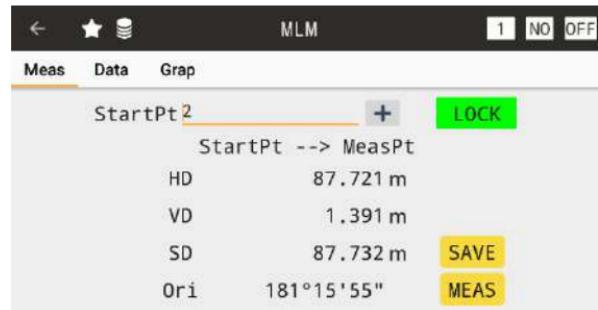
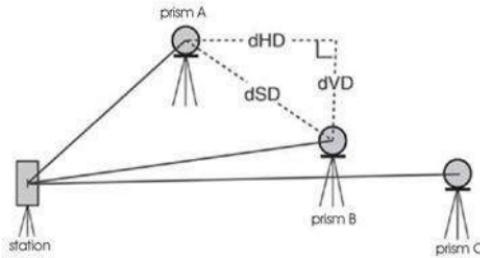
The equipment will calculate the 3D coordinate of point P0 automatically.

DireA: Collimate the side of column.

DireB: Collimate the other side of column.

Center: Collimate the center and measure.

[OK]: Angle of Direction A/B has been set.



[ANG.]: Re-measure the angle.

[DIST]: Start to measure the center point.

[RESET]: Re-measure the distance.

[SAVE]: Save the measurement result.

5.5 MLM /TIE DISTANCE

MLM function is mainly used to compute the HD/ VD/ SD/ azimuth between two target points.

The coordinate of points can be selected from the memory, entered by manual or measured directly.

The user can choose between two methods:

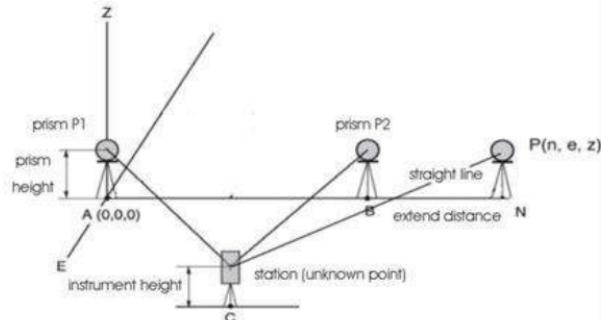
1. MLM (A-B, A-C), lock the start point
2. MLM (A-B, B-C), unlock the start point.

StartPt: Entered or selected a start point

HD: The horizontal distance between two points.

VD: The vertical distance between two points.

SD: The slide distance between two points.


Ori: The bearing angle between two points.

[LOCK]: Lock the current start point, if not, the start point would be the last measured point.

[SAVE]: Save the current result.

[MEAS]: Start to measure.

5.6 LINE & EXTEND POINT

The extension function computes extend point from the base line, calculate the unknown coordinate from two known points and the extend distance.

Known:

P1, start point

P2, end point

BN, extend distance

Unknown:

P, Extend point

ExtendPt			1	NO	OFF
Meas	Data	Graph			
Pt	Code	R.Ht 1.500 m			
HA:	320°30'06"	VA:	44°23'25"		
P1	m	MEAS	VIEW		
P2	m	MEAS	VIEW		
Ext.Dist	m	POST	SAVE		

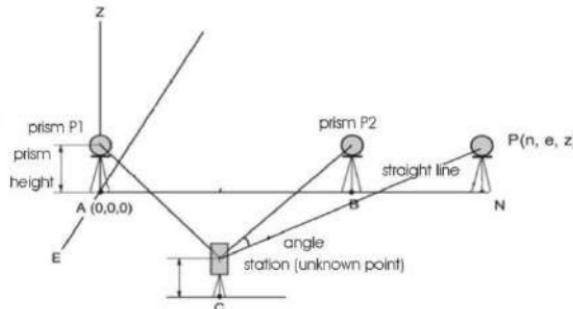
HA: The current horizontal angle.

VA: The current vertical angle.

Pt P1: The slide distance to the first point.

Pt P2: The slide distance to the second point.

Ext Dist: Input the extend distance.


[MEAS]: To measure the first or second point.

[VIEW]: To view the measurement result.

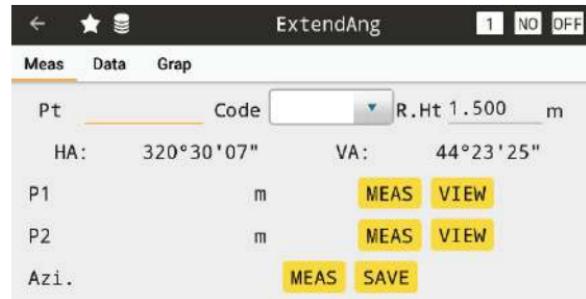
[NEGA]: Negative or positive direction

[Save]: Save the extension point.

5.7 LINE & EXTEND ANGLE

The extension function computes extend point from the base line, calculate the unknown coordinate from two known points and the azimuth.

Known:


P1, start point

P2, end point

Azimuth between station C and extend point P

Unknown:

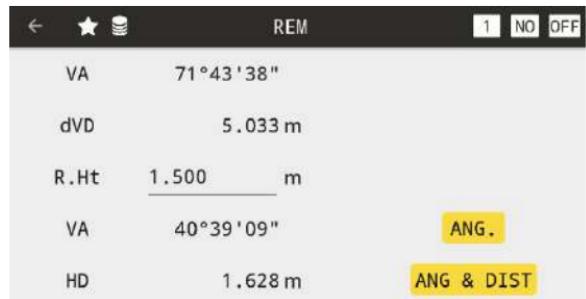
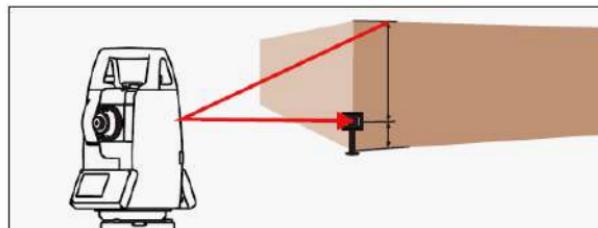
P, Extend point

HA: The current horizontal angle.

VA: The current vertical angle.

Pt P1: The slide distance to the first point.

Pt P2: The slide distance to the second point.



Azi.: Azimuth between station and extend point.

[MEAS]: To measure the first or second point.

[VIEW]: To view the measurement result.

[SAVE]: Save the extension point.

5.8 REM/REMOTE HEIGHT

The points directly above the prism can be determined without a reflector at the target point.

When you need the information of a target hang in the air, REM can help you measure the point without a reflector.

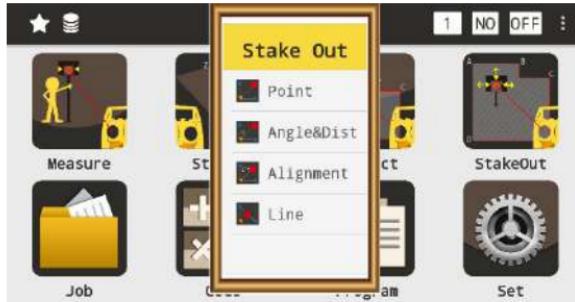
In the power industry, this function can be used to measure the height of transmission cable.

VA(the first line): Current vertical angle.

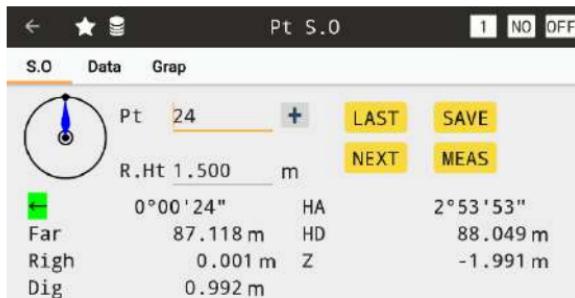
dVD: Vertical difference between measured point and target.

R.Ht: Reflector height.

VA: Vertical angle of measured point.


HD: Horizontal distance of measured point.

[ANG.]: Measure the VA.


[ANG & DIST]: measure the VA and HD.

6. STAKE OUT

6.1 POINT STAKE-OUT

The menu of Stake-out

The guidance of Stake-out

Setting out the coordinates from memory or manually entered

Pt: ID of the stake-out point.

R.Ht: Reflector height

[LAST]: Select the last stakeout point

[NEXT]: Select the next stakeout point.

[SAVE]: Save the current stake-out point

[MEAS]: Select the next stakeout point.

←/→: Direction to rotate the instrument.

Far/Near: Guide to move forward or backward.

Left/Right: The deviation from the target

Fill/Dig: Guide to move upward or downward.

HA: Horizontal angle of the stake-out point.

HD: Horizontal distance of the stake-out point.

Z: Elevation of stakeout point.

6.2 ANGLE & DISTANCE STAKE-OUT

AngDistS.0

1 NO OFF

S.O. Data Graph

MEAS R.Ht 1.500 m

SAVE HA 150°00'00"

0°00'01"

Near -24.522 m HD 25 m

Left 0.000 m Z 10 m

Fill -10.101 m

Stake-out the points by entered the value of angle offset (HA), longitudinal offset (HD) or height offset (Z)

6.3 ALIGNMENT STAKE-OUT

Alignment S.0

1 P OFF

S.O. Data Graph

Pt +

Azimuth 000°00'00"

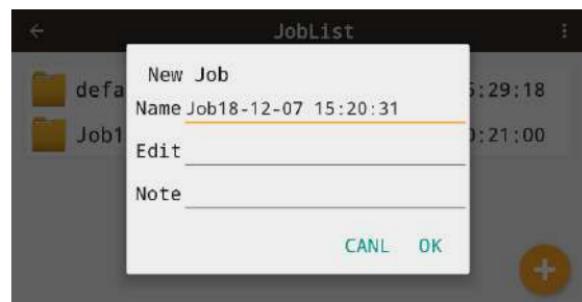
HD 0.000 m


VD 0.000 m

NEXT

Stake-out the points by entered the value of azimuth, longitudinal offset (HD) and height offset (VD)

Find further details on "Point Stake-out"


6.4 LINE STAKE-OUT

It will calculate the coordinates of the stake-out point through two known points (St Pt and End Pt) and the offset distance (left or right, forward or backward, up or down) based on the line which is formed by the known points

Find further details on "Point Stake-out"

7. JOB

Press the information key on the right corner to create or delete the job.

8. COGO

8.1 TRAVERSE

Traverse

1 NO OFF

Calc Grap

StartP + Result

St.Ang N m

Turn E m

HD m Z m

VD m

SAVE CALC

Calculate the coordinates of point with a known point, based on the direction and distance offset

St Pt: Start point. Input a known point

St.Ang: Azimuth of start point

Turn: The turning direction of start point.

[SAVE]: Save the calculation result

[CALC]: Calculate the coordinate

8.2 INVERSE

Inverse

1 NO OFF

Inv. Grap

StartP +

End Pt +

HD m V%

SD m Ang.

VD m

CALC

Calculate the relationship between two points

St Pt: Start point.

End Pt: End point.

HD: Horizontal distance between two points.

SD: Slide distance between two points

VD: Vertical difference between two points.

V%: Slope of two points.

Ang.: Angle between two points.

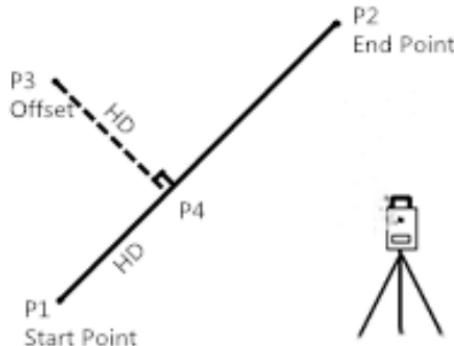
[CALC]: Calculate

8.3 AREA & GIRTH

Area & Girth

Name	N	E
22	100.000	15.000
23	102.000	18.000
24	102.936	19.452

Add>> + ↑ ↓ Del. Calc

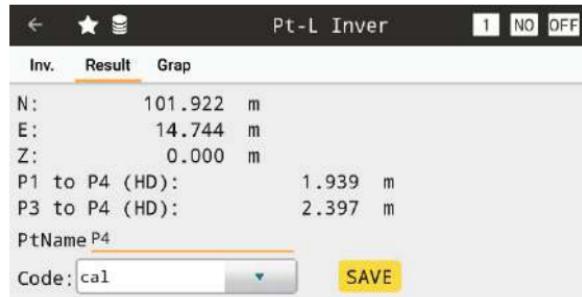

Calculate the area and perimeter of known points. The added points will be displayed on the list

[ADD] or **[Insert]**: Add or insert points from the memory. Click to switch between add and insert.

[Del]: Delete a chosen data on the list

[Calc]: Calculate

8.4 POINT-LINE INVERSE

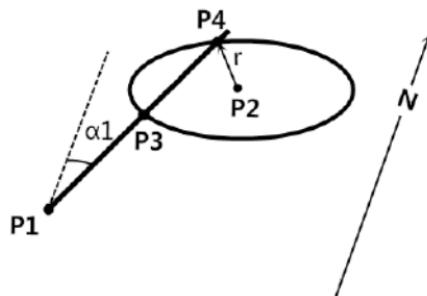

Pt-L Inver

St P1	+
End P2	+
Devi. P3	+

CALC

☞ Input or select the points from the memory

Defined a line between two points, P1 and P2, the offset point P3 is perpendicular to this line. The system will calculate the HD from start point P1 to orthogonal point P4, and from offset point P3 to orthogonal point P4



☞ the result.

8.5 INTERSECTION-2 POINTS

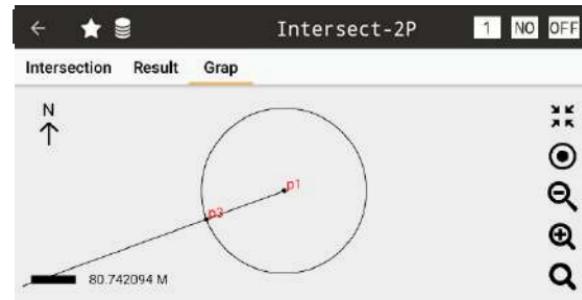
According to the coordinate of two start points, and the relationship (by azimuth, by distance or both) to calculate the coordinate of intersection point. The points can be selected from the memory, entered by manual or measurement.

1. Calculate the intersection by Azimuth & Distance

Intersect-2P 1 NO OFF

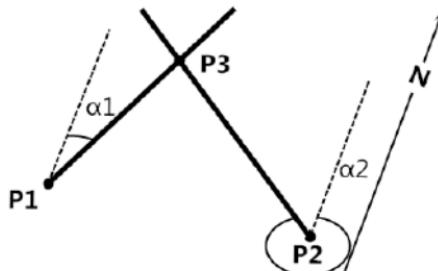
Intersection Result Graph

Start P1 +

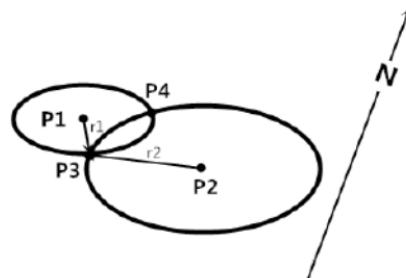

AZIMUTH 000°00'00"

Start P2 +

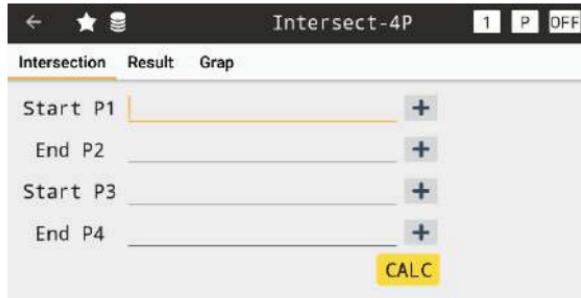
DIST 0.000 m


CALC

☞ the intersection by azimuth and distance



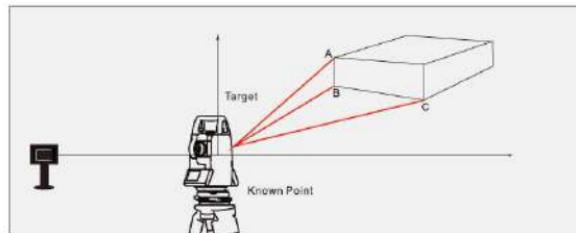
☞ the intersection result in graphic.


2. Calculate the intersection by Azimuth

3. Calculate the intersection by Distance

8.6 INTERSECTION-4 POINTS

Calculate intersection point of two lines which are formed by four points


St P1/End P1: The start/end point of Line 1

St P2/End P2: The start/end point of Line 2

[CALC]: Calculate the coordinate of the intersection point.

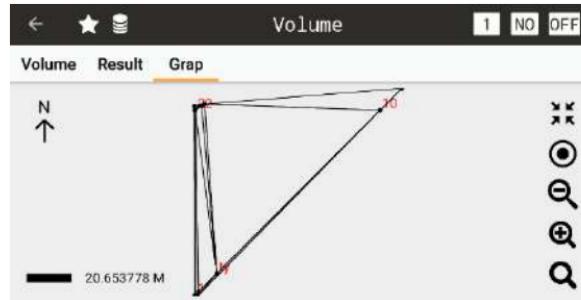
[SAVE]: Save the coordinate

8.7 VOLUME

The system will create a triangulation network based on the points in the list, and take the reference height as the reference plane to calculate the volume.

Volume Volume 1 NO OFF

Volume Result Grap


No.	Name	N	E	Z
1	1	15,000	15,000	0,000
2	22	100,000	15,000	0,000
3	22	102,000	15,000	0,000

Refer.Ht: m ADD ALL DEL. ALL

St Pt End Pt MULTI DEL.

SinglePt + ADD PT CALC

☞ the calculation result of volume.

☞ the graphic result of volume.

9. ROAD

default 1 NO OFF

Road Select

H Align

V Align.

Road S.0

It calculate the target as a composite curve which might including the elements of straight line, transition curve and circular curve. The system will stake-out the designed road based on the pile number and deviation value

☞ the Road menu

9.1 ROAD SELECT

Select a road as the current job. Each road included two parts,

Press **[+]** to create a new job. You can also edit or delete the current job in job list

☞ job list

9.2 H-ALIGNMENT

The horizontal alignment including the elements of start point, straight line, circular curve and transition curve.

Click each item to add the elements based on the design

☞ Element list of horizontal alignment

StartP

St Mile	0.000	m
N	500.000	m
E	500.000	m
Azimuth	10.00000	dms

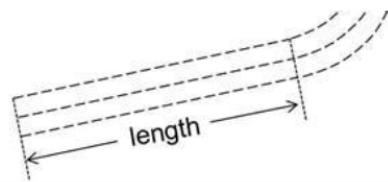
STARTP EXIT OK

St Mile: entered the mile of start point

N: North coordinate of start point

E: East coordinate of start point

Azimuth: Azimuth of start point


☞ Input the parameter of start point

Strai

Length	180.000	m
--------	---------	---

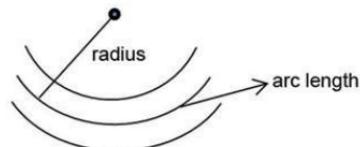
STARTP EXIT OK

Length: entered the length of straight line.
the value should > 0.

☞ Input the parameter of straight line

Curve

Radius	180.000	m	.000
Length	100.000	m	.000


STARTP EXIT OK

☞ Input the parameter of circular curve

R: entered the radius of curve.

The positive value means the road is turning right, the negative value means left.

Arc: the length of curve, the value should > 0 .

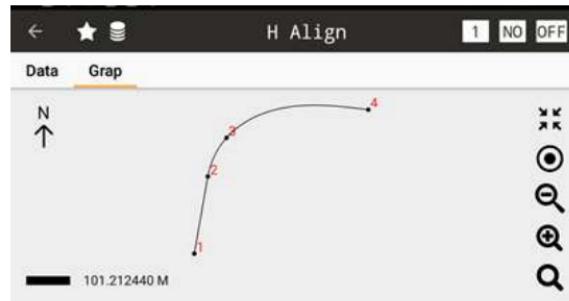
Trans

Para	0.000	m	.000
Start R	0.000	m	.000
End R	0.000	m	.000

ST PT CANL OK

☞ Input the parameter of transition curve

Para: Input the parameter, the positive value means turning left, negative value means turning right.


Start R: Input the start radius R1

End R: Input the end radius R2

While one side of the radius is ∞ , for convenience, user can input 0.

☞ Element list of horizontal alignment, click each item to edit or delete the data.

☞ Graphic display of the horizontal alignment.

9.3 V-ALIGNMENT

The vertical alignment is composed by the intersection points which including pile number, elevation and length of the curve.

The length of curve, for start and end point must be zero.

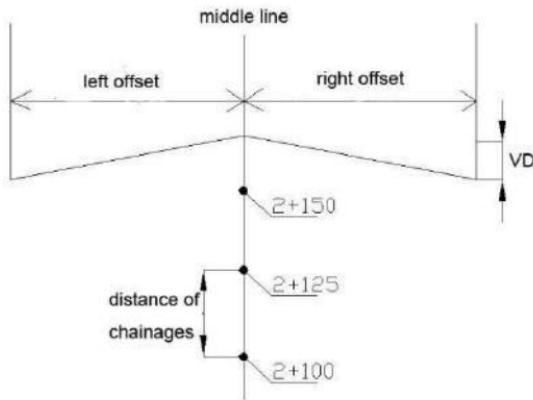
☞ Element list of vertical alignment

Pile	0.000	m
Data	1	NO OFF
Grap		
Pile		
Ht	0.000	m
Front V%	0.0	
Back V%	0.0	
Radius	0.000	m
ADD		EXIT
OK		

☞ Input the parameter of vertical elements

[ADD]: Add a new element of vertical alignment.

Pile: The pile ID of changing point


Ht: The height of changing point

Front V%: The vertical slope between current point to the last point.

Back V%: The vertical slope between current point to the next point.

R: The radius, distance between two points.

9.4 ROAD STAKE-OUT

Please confirmed that the station has been set, also the horizontal and vertical alignment has been defined correctly before stake-out.

Road S.0

1 NO OFF

St. Mile 0.000 m

Step 10.000 m

Pile Deviation

L R 0.000 m

Up Dn 0.000 m

NEXT>

☞Please check Chapter 6 Stake-out for further guidance.

St. Mile: The start position of stake-out

Step: The increased or decreased mile in each step.

L/R: The left or right offset from the middle line of the road.

Up/Dn: The elevation offset of the design point to the middle line.

[NEXT]: Go for next step (stake-out).

10. SET

10.1 UNIT

Unit	Angle Degree
Angle	
Distance	Dist. M
Coordinate	Temp. °C
Comm.	
Adjustment	Pressure hPa

Angle: Set the angle unit, among degree, gon, mil

Dist.: Set the distance unit, M (Meter) or Ft (Feet)

Temp.: Set the temperature unit, °C or °F

Pressure: Set the pressure unit, hPa, mmHg, inHg.

10.2 ANGLE

V0: Set horizontal zero or vertical zero.

Tilt-comp: On or off the tilt compensator.

Press the information button on the right corner to set the current setting as default. The new job will follow the same settings.

10.3 DISTANCE

Para

Scale: Set the scale factor of measurement.

Ht: Set the height of the station.

K: Set the correction parameter of atmosphere refraction modulus and earth curvature radius.

Distance	
Unit	T-P Set
Angle	T-P Sensor Auto-comp?
Distance	<input checked="" type="checkbox"/>
Coordinate	T-P Auto Set the Acc.to 1mm
Comm.	<input type="checkbox"/>
Unit	Temp 25.0°C
Angle	Pres 1066.0hPa
Distance	PPM 25.0
Coordinate	<input type="checkbox"/>
Comm.	Mode
Adjustment	Select N Times
Unit	Average
Angle	<input checked="" type="checkbox"/>
Distance	N Times 1
Coordinate	<input type="checkbox"/>
Comm.	Target
Coordinate	Target Prism
Comm.	Cons -30.0
Adjustment	Enhance

T-P Set

T-P Sensor: On/off the temperature & pressure sensor.

T-P Auto: On/off the T-P auto correction

Temp: Set the current temperature.

Pres: Set the current pressure.

PPM: Set the atmosphere correction value.

Mode

Select: N times, continuous or tracking.

Average: calculate the average value

N times: Set the measure times, maximum 20.

Target

Target: Set the target among prism, reflector sheet and non-prism.

Cons: Set the constant of prism

Enhance: Enhance the measure range (Single prism up to 5000m, triple prism up to 6000m)

10.4 COORDINATE

Coordinate	
Unit	Order N-E-Z
Angle	
Distance	HL/HR HL/HR Same Result
Coordinate	
Comm.	
Adjustment	

Order: the order of coordinate display. By N-E-Z or E-N-Z.

HL/HR: Set whether the coordinate value is relative to instrument's HL or HR, if not, the measurement results on both left face and right face are the same.

10.5 COMMUNICATION

Comm.	
Unit	Comm OFF
Angle	
Distance	BaudRate 9600
Coordinate	Bit 8Bits
Comm.	Parity Odd
Adjustment	Stop 1bit

Comm: On or off the comm port.

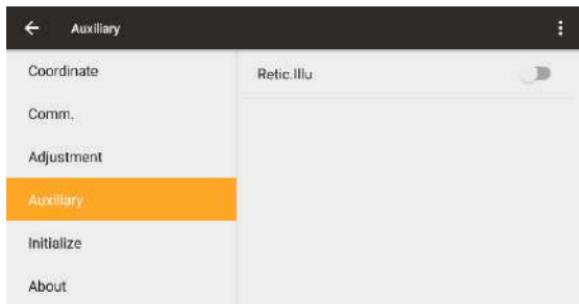
Baud Rate: Set the baud rate of communication.

Bit: Set the bit of communication port, 8 or 7 bits.

Parity: set the parity bit of communication, odd/ even/ none.

Stop: set the stop bit of communication, 1 or 2 bits.

10.6 ADJUSTMENT



Constant K: Set the constant K of prism or non-prism mode.

Vertical 0: The adjustment of vertical difference (the so-called i-angle). This item must be adjusted when you finished the compensator and crosshair adjustment.

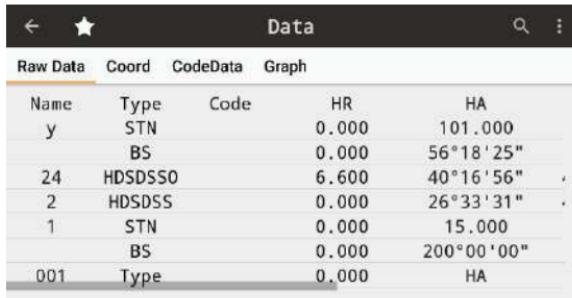
TiltComp: The adjustment of electronic tilt-sensor, also called E-bubble.

10.7 AUXILIARY

Retic.Illu: On or off the reticle illumination.

10.8 INITIALIZE

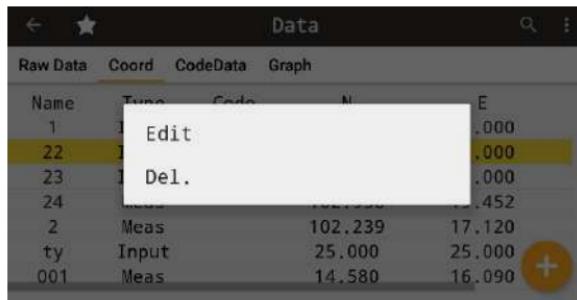
Initialize: Initialize the parameter/ settings back to the factory mode.


10.9 ABOUT

SW Info: View the software information, including the software version, model name, SN and device ID. Also you can check the version of mainboard, EDM, compensator and T-P sensor.

11. DATA

11.1 RAW DATA


Name	Type	Code	HR	HA
y	STN		0.000	101.000
	BS		0.000	56°18'25"
24	HDSOSSO		6.600	40°16'56"
2	HDSOSS		0.000	26°33'31"
1	STN		0.000	15.000
	BS		0.000	200°00'00"
001	Type		0.000	HA

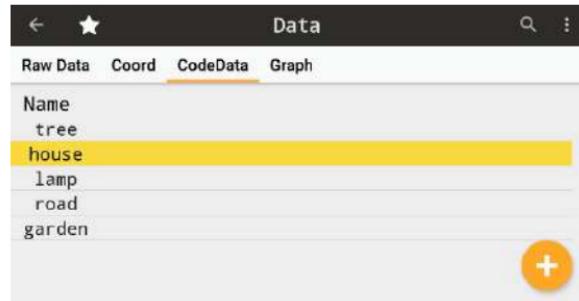
View the raw data. For further data format, please check the Appendix in the last page.

⋮ Clear the data list, import or export the raw data.

🔍 Search the point from the data list.

11.2 COORDINATE DATA

Name	Type	Code	N	E
1			0.000	
22			0.000	
23			0.000	
24			0.000	452
2	Meas		102.239	17.120
ty	Input		25.000	25.000
001	Meas		14.580	16.090


View the coordinate data.

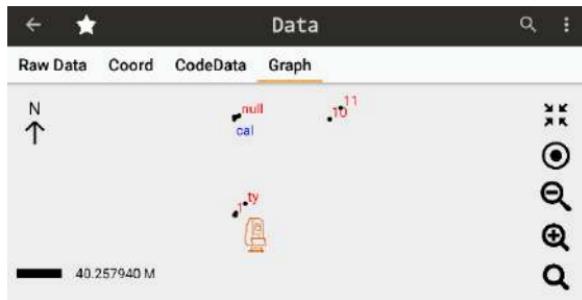
Click the point in once to edit or delete the data.

⋮ Clear the data list, import or export the raw data.

🔍 Search the point from the data list.

11.3 CODE DATA

The screenshot shows a mobile application interface titled 'Data'. The top navigation bar includes a back arrow, a star icon, the title 'Data', a search icon, and a more options icon. Below the title, there are tabs: 'Raw Data', 'Coord', 'CodeData' (which is highlighted in blue), and 'Graph'. The main content area is a table with a single column labeled 'Name'. The table contains the following data rows: 'tree', 'house' (which is highlighted with a yellow background), 'lamp', 'road', and 'garden'. In the bottom right corner of the content area, there is a large orange circular button with a white plus sign inside.

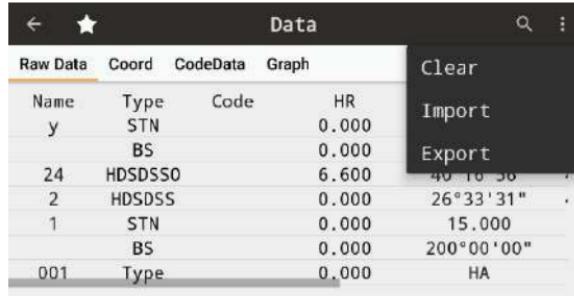

View the code data.

Click the code in once to edit or delete the data.

⋮ Clear the data list, import or export the raw data.

🔍 Search the point from the data list.

11.4 GRAPHIC DATA



The screenshot shows a mobile application interface titled 'Data'. The top navigation bar includes a back arrow, a star icon, the title 'Data', a search icon, and a more options icon. Below the title, there are tabs: 'Raw Data', 'Coord', 'CodeData', and 'Graph' (which is highlighted in blue). The main content area displays a map with several data points. One point is labeled 'null' and 'cal'. Another point is labeled '10' and '11'. There are also icons for a north arrow, a coordinate system (x, y), and a house. To the right of the map, there is a vertical legend with six icons: a point with an 'X', a point with a circle, a magnifying glass, a point with a plus sign, and a magnifying glass. At the bottom left, there is a scale bar icon followed by the text '40.257940 M'.

View the graphic data.

🔍 Sort and filter the points. By point name, by code or line.

11.5 DATA IMPORT

Raw Data Coord CodeData Graph Clear

Name Type Code HR
y STN 0.000
BS 0.000
24 HDSDSS0 6.600 40°10'30"
2 HDSDSS 0.000 26°33'31"
1 STN 0.000 15.000
BS 0.000 200°00'00"
001 Type 0.000 HA

Import

Export

Click **[Import]** and **[FILE]** to select the file from internal memory or flash disk.

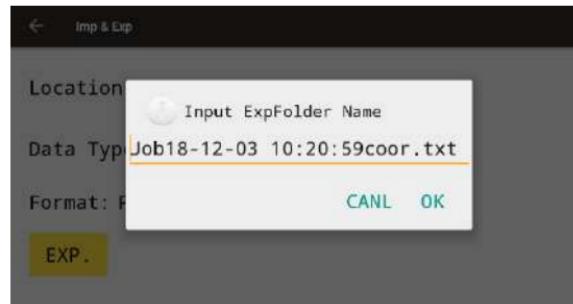
← Import

Location: /storage/sdcard0/total...

Data Source: TXT (*.txt)


Data Type: Coord.

Format: Pt,N,E,Z,Code


FILE IMP.

Choose the data type (Coordinate/ Code data) and format (the display order of point name, code, N, E, Z) you want, then click **[IMP.]** for import.

11.6 DATA EXPORT

Click [**Export**] to choose the location (RAM/Comm or U-disk), data type (Coordinate/ Code/ Raw Data) and the format you want, then click [**EXP.**] for export.

Entered the name and save the file.

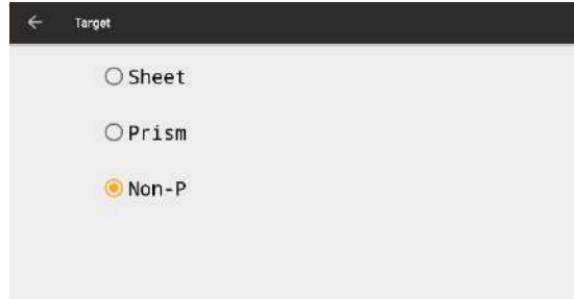
AXIS9 is available to transfer the data by Bluetooth. Check [Settings], [Bluetooth] in Android system to pair the devices.

12. QUICK-SET ★

Including the quick set of laser pointer, PPM, target, tilt-sensor, measure mode and laser plummet.

Press ★ or slide the finger from the left side of screen to activate the page of quick-set.

12.1 PPM SET

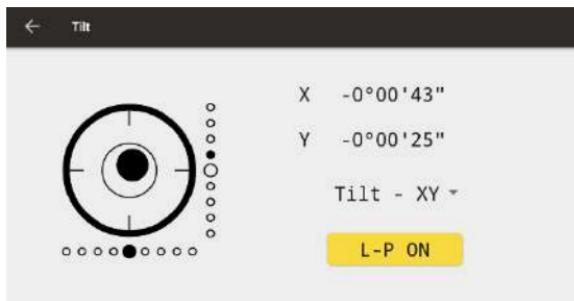

Temp: Temperature of current job.

Pres: Pressure of current job.

PPM: Atmosphere correction value

Auto: On or off the auto correction of temperature-pressure sensor

12.2 TARGET



Reflec.: Set the target to reflector sheet

Prism: Set the target to prism

Non-P: Set the target to non-prism

12.3 TILT SENSOR



Tilt-XY: On or off the tilt-sensor.

It can be selected among Tilt-X (single-axis), Tilt-XY (dual-axis) or Tilt-Off.

L-P ON: on or off the laser plummet. Click the button to switch between L-P ON and L-P OFF.

12.4 MEASURE MODE

N Times.: Set the measure times as N, and decide whether to calculate the average value or not.

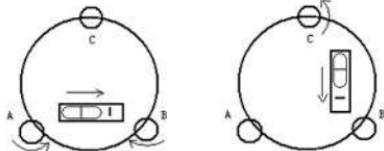
Continu.: Continuous mode.

Tracking: Tracking mode. The accuracy will lower than the other mode, with faster speed.

12.5 LASER PLUMMET

Adjust the illumination level of laser plummet from level 1-5. 5 is the highest level.

13. INSPECTION & ADJUSTMENT


The instrument has passed the procedure of inspection and adjustment before releasing to the market, which ensures that it meets quality requirement. However, after long periods of transportation or the changeable environment, some influences may occur to the internal structure.

Therefore, before the instrument is used for the first time, user should check and adjust the functions we introduced in this session to ensure the precision of the job.

13.1 PLATE VIAL

Inspection

Loosen the horizontal tangent screw, rotate the equipment to ensure that the plate vial is parallel to the direction of foot screw AB. Adjust the screw A/B in opposite direction to move the bubble in the center. Rotate the instrument to 180° to see whether the bubble is in center, if not, the plate bubble needs to be adjusted.

Adjustment

1. If the bubble of the plate vial moves away from the center, bring it half way back to the center by adjusting the screws, which is parallel to the plate vial. Correct the remaining half by adjusting pin.
2. Rotate the instrument in 180° to check whether the bubble is in the center. If not, repeat Step 1.
3. Rotate the instrument in 90°, adjust the third screw. Repeat the steps until the bubble remains in the center in any direction.

13.2 CIRCULAR VIAL

Inspection

It is not necessary to adjust the circular vial, except the bubble is not in the center after the adjustment of plate vial.

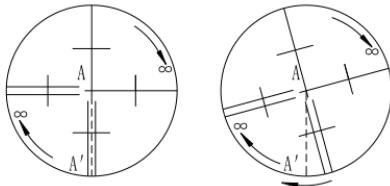
Adjustment

If the bubble of the circular vial is not in the center, adjust the bubble to the center by using the adjusting pin or hexagon wrench.

First, loosen the screw opposite to the offset side, and then tighten the other adjusting screw on the offset side, bringing the bubble to the center. When the bubble stays in the center, keep the tightness of the three screws uniformly.

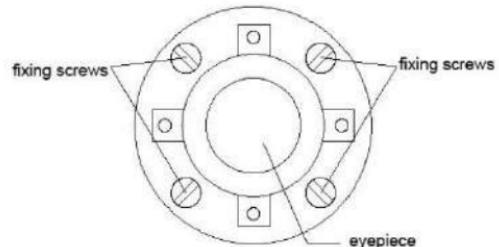
13.3 TILT-SENSOR

Adjust the plate vial at first, leveling the equipment. Then enter the adjustment page of tilt-sensor. Press [SET] to set the sensor as 0 in the current state.


Focusing the same target by HL and HR, and follow the guidance of equipment under Chapter 10.6.

13.4 RETICLE UNIT

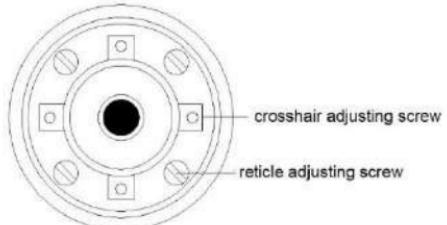
Inspection


1. Sight object A after leveling the equipment, lock the horizontal and vertical tangent unit and make sure that target A is in the center of cross-hair.
2. Move object A to the edge of the field of view, point A' by rotating the vertical tangent screw.
3. Adjustment is not necessary if object A moves along the vertical line of the reticle and point A' still in the vertical line.

Otherwise, as picture shown, A' is deviate to the center of the vertical cross-hair, it is necessary to adjust.

Adjustment

1. Remove the eyepiece cover to expose the four reticle adjusting screws, as picture shown.
2. Loosen the four reticle adjusting screws uniformly by the adjusting pin. Rotate the reticle around the sight line and align the vertical line of the reticle with point A'.
3. Tighten the adjusting screws slightly. Repeat the previous steps to see whether the position is correct.
4. Assemble the eyepiece cover back.


13.5 PERPENDICULARITY BETWEEN SIGHT OF VIEW & HORIZONTAL AXIS (2C)

Inspection

1. Set object A at a far distance at the same height as the instrument, leveling the instrument and turn on the power (eg. $HL=10^{\circ} 13'10''$).
2. Sight object A in horizontal left and read value of HA. (eg. $HR= 190^{\circ} 13'40''$).
3. Loosen the vertical and horizontal tangent unit and rotate the telescope. Sight object A in horizontal right and read the HA.
4. $2C = HL - HR \pm 180^{\circ} = -30'' \geq \pm 20''$, overrange. So it is necessary to adjust 2C.

Adjustment

1. Use the horizontal tangent screw to adjust the reading of HA.
 $HR+C = 190^{\circ} 13'40'' - 15'' = 190^{\circ} 13'25''$
2. Take off the cover of the reticle between the eyepiece and focusing screw. Adjust the two adjusting screws, loosening one screw and tightening the other one. Move the reticle to sight object A exactly.
3. Repeat inspection and adjustment until $|2C| < 20''$. Then replace the cover of the reticle.

13.6 COMPENSATION OF VERTICAL INDEX DIFFERENCE

Inspection

1. After leveling the instrument, make the EDM parallel with the line connecting the center of the instrument to any one of the screws. Lock the horizontal clamp screw.
2. Switch on the equipment, zero the vertical index. Lock the vertical clamp screw and the instrument will display the vertical angle value.
3. Rotate the vertical tangent unit slowly in either direction about 10mm in circumference, and the overrange message appears. It means that the tilt of vertical axis is larger than 4', over the range

of compensation. When rotate the vertical tangent unit in opposite direction back to the original place, the instrument will show the vertical angle again, it means that the compensation of vertical index difference works well.

Adjustment

If the compensation function is not working, please send the instrument back to the authorized agency for maintenance.

13.7 VERTICAL 0 (I ANGLE)

The adjustment of vertical index difference (the so-called i-angle).This item must be adjusted after finishing the adjustment of tilt-sensor and crosshair.

Inspection

1. After leveling the instrument, collimate at any target A in HL. Record the value as L.
2. Rotate the EDM and aim at the target A in HR. Record the value as R.
3. If the vertical 0° in zenith, $I = (L + R - 360^\circ) / 2$. If the vertical 0 in horizon, $I = (L + R - 180^\circ) / 2$ or $(L + R - 540^\circ) / 2$.
5. If $|i| \geq 10''$, it need to reset the Vertical 0.

Adjustment

1. Aim at target A in same height with the instrument in HL.
2. Aim at the same target A on HR.
3. After setting the angle in both HL and HR, it will display the index difference, press [SET] to set the adjustment.
4. Repeat the inspection steps to check the Index Difference (i angle). If the difference still cannot meet the requirement, please check whether the steps you did are correct. Then reset again.
5. If the Index Difference still fails to meet the requirement after repeated operation, the instrument should be returned to our authorize service center for inspection and repair.

Note: The value of vertical angle is not adjusted and compensated, just for a reference in adjustment.

13.8 CONSTANT K

The Instrument constant has been checked and adjusted in the factory, and K=0. It seldom changes and it is suggested to check once or twice in a year.

Inspection

1. Mount and level the instrument on Point A on flat ground. Use the vertical hair to mark Point B and Point C with the distance of 50m on the same line, and collimate the reflector accurately.
2. After setting temperature and pressure value, measure the horizontal distance of AB and AC accurately.
3. Setup the instrument on Point B and center it accurately. Measure the horizontal distance of BC accurately.
4. Then you can get the Instrument Constant:
$$K = AC - (AB + BC)$$
. The value of K should be close to 0. If $|K| > 5\text{mm}$, the instrument should be strictly inspected on the base alignment, and be

adjusted according to the inspection value.

Adjustment

Set the orientation through the vertical hair to make Point A,B, and C on the same line strictly. There must be a fixed and clear centering mark under the Point B.

The coincidence of the center of the prism and the center of the instrument is very essential to the measuring accuracy. Therefore, it's best to use a tripod or a common-used tribrach on the point B. If we replace it with a three-foot adapter and a tribrach, make sure that they are stable and fixed. It is possible to reduce the inconsistency if we just replace the upper part of the prism and the upper part of the instrument.

13.9 COINCIDENCE BETWEEN SIGHT OF VIEW AND EMITTING AXIS

Inspection

1. Set the reflector 50m away from the instrument.
Aim at the center of prism precisely.
2. Activate the laser pointer. Check whether the center of reticle coincides to the laser pointer. If no, please adjust the emitting axis.

Adjustment

If there is a huge deviation between the sight of view and emitting axis, please send the instrument to authorized service center for maintenance.

13.10 LEVELING SCREWS ON TRIBRACH

If any of the leveling screws becomes loose, tighten the adjusting screws on the side of leveling screw appropriately.

14. ERROR CODE

CODE	DESCRIPTION	SOLUTION
ERROR 01-06	Problems in angle measurement system	Restart equipment. If the error code still remains, please contact your authorized agency
ERROR 31-36	Problems in distance measurement system	

15. SAFETY GUIDE

15.1 INTERNAL DISTANCE METER (VISIBLE LASER)

Warning

The total Station is equipped with an EDM of Laser Class 3A/III a and it is verified by these labels as follows:

There's an indication label "CLASS III LASER PRODUCT" above the vertical clamp screw on Face Left as well as on the Face Right.

The product is classified as Class 3A laser product, according to the standards as follows:

IEC60825-1:2001 "SAFETY OF LASER PRODUCTS"

The product is classified as Class III a laser product according to the standards as follows:

FDA21CFR ch.1 § 1040:1998 (U.S. department of Health and Human Services, Code of Federal

Regulation)

Class 3A/III a laser product: It is harmful to observe the laser beam continuously. Users should avoid staring at the laser directly. It can reach as much as 5 times the emitting limit of Class 2 / II with a wavelength between 400nm and 700nm.

Warning

It is harmful to continuously look straight at the laser beam.

Prevention

Do not stare at the laser beam, or point the laser beam at others. Reflecting laser beam is also valid.

Warning

When the laser beam emits on prism, mirror, metal surface, window, it might be dangerous to look directly at the reflecting light.

Prevention

Do not stare at the direction which the laser beam is reflected. When the laser is turned on (under distance measure mode), do not look at it near the optical path or the prism. It is only allowed to observe the prism through the telescope of the total station.

Warning

It is dangerous to make improper use of the Class IIIa laser equipment.

Prevention

To avoid incurring harm, all the users should take safety precautions, and must make sure that everything is under control within the distance

that might bring dangers (according to IEC60825-1:2001)

There are explanations of some principle points of related standard as follows:

Class 3R laser product is used in outdoors and construction site (measuring, defining alignment, leveling, etc.). The laser equipment can only be installed, adjusted and operated by those persons who have taken related training course and got the authentication.

- a. Set related laser warning marks on site.
- b. Prevent anyone from looking straight at the laser beam directly or through optic instrument.
- c. To avoid the harm brought by laser, users should block the laser beam at the end of the working route. When the laser beam passes through the restricted area (harmful distance*), and there are persons taking activities, users

must stop the laser beam in time.

- d. The optical path of the laser beam should be set higher or lower than the line of sight.
- e. When the laser instrument is not in use, users should keep it well. It is not allowed for operation unless the user is authenticated.
- f. Prevent the laser beam from accidentally emitting at mirror, mental surface, window, etc. Especially pay attention to the surface of plane mirror or concave mirror.

* Harmful distance suggests that the maximum distance from the start point of the laser beam to the point which the laser beam is weakened to a certain degree that doesn't harm people. The internal distance measure product which is equipped with a Class3R/III a Laser Product has a harmful distance of 1000m (3300ft). Beyond this distance, the laser strength is weakened to Class I (It is not harmful to look straight at the laser beam

15.2 LASER PLUMMET

The internal laser plummet sends out a ray of red visible laser beam from the bottom of the instrument.

This product is classified as Class 2/II laser product.

Class 2 laser product is in accordance with the following standard:

IEC 60825-1:1993 "SAFETY of LASER PRODUCTS"
EN 60825-1:1994+A II:1996 " SAFETY of LASER PRODUCTS"

Class II laser product is in accordance with the following standard:

FDA21CFR ch.1 § 1040:1998 (U.S. Department of Health and Human Services, Code of Federal Regulations)

Class 2/II Laser Product:

Do not stare at the laser beam or point it at others. Users should prevent the laser beam and the strong reflecting light from impinging into eyes so as to avoid incurring harm

APPENDIX A - DATA FORMAT

Raw Data

JOB	job name, description
DATE	date, time
NAME	name of the job creator
INST	serial number of the total station
UNITS	units in use: m/inch, dms/gon
SCALE	grid factor, scale, altitude
ATMOS	temperature, pressure
STN	Station ID, instrument height, code
XYZ	coordinate

BKB	backsight point, backsight angle, azimuth
SS	point name, target height, code
HV	horizontal angle, vertical angle
HD	horizontal angle, horizontal distance, height difference
SD	horizontal angle, vertical angle, slide distance
OFFSET	radial offset, tangential offset, plummet offset

Coordinates Data

The data in below formats can be transferred to the computer.

1. Pt, N, E, Z, code
2. Pt, E, N, Z, code

3. Pt, code, N, E, Z

4. Pt, code, E, N, Z

Code Data

1. Horizontal Alignment

name	name of the road
start	start chainage
line	the length of the straight line
arc	radius of the circle, length of the curve
spiral	radius, length

DXF File

Refer to Standard R12.

1. All points with the same code will be on the same layer.
2. All the lines are on the same layer.
3. All points without a code will be on the default layer.

2. Vertical Alignment

gcp	mile, elevation, length
-----	-------------------------